

Difluoro [2.2] paracyclophanes Characterization by ¹H, ¹³C and ¹⁹F NMR

Xiaoling Huang a, Fanqi Qu a, Kirk Marat b, Alexander F. Janzen b,*

^a Department of Chemistry, Wuhan University, Wuhan 430072, China ^b Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2

Received 11 September 1997; accepted 15 April 1998

Abstract

The four isomers of diffuoro [2,2] paracyclophane are uniquely identified on the basis of their ¹H, ¹³C and ¹⁹F NMR spectra. ¹³C/¹²C isotope effects on the ¹⁹F chemical shifts were measured and a small transannular effect was detected. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Difluoro[2.2] paracyclophanes; NMR characterization

1. Results and discussion

The four isomers of difluoro[2.2] paracyclophane, of which the 4,12- and 4,15-isomers are chiral, were synthesized as described previously [1]. HPLC-separated fractions were used for the preparation of all NMR samples and the purity of these fractions was most conveniently monitored by ¹⁹F NMR. Samples of the 4,13-isomer and of the 4,12-isomer were free of other isomers. There was overlapping of HPLC peaks for the 4,15- and 4,16-isomers, but repeated cycles of injection and collection increased the concentration of each isomer to ~70% and allowed an unambiguous assignment of NMR peaks.

Table 1 ¹H NMR chemical shifts for diffuoro[2.2] paracyclophanes

Isomer	Н5	Н7	Н8	H ^A	Нв	H _C	HD
4,13-isomer	6.15	6.37	6.43	2.75	3.47	3.02	3.02
4,15-isomer	5.92	6.39	6.87*	2.77	3.25	2.97	2.97
4,12-isomer	6.38*	6.32	6.50	2.67	3.32	2.98	2.98
4,16-isomer	5.87	6.73*	6.46	2.7	3.37	3.0	3.0

^{*:} Indicates the presence of a fluorine substituent on the directly opposite benzene ring position (pseudo-gem relationship).

The ¹H, ¹³C and ¹⁹F NMR data of the four isomers of difluoro[2.2] paracyclophane are summarized in Tables 1, 2 and 3 and the chemical shifts are shown schematically in Fig. 1. The assignment of NMR peaks and the unique identification of each isomer is relatively straightforward once the intra- and inter-ring effects of fluorine substituents are taken into account. Of particular importance is the pseudo-gem

^{*} Corresponding author. Tel.: +1-204-474-9731; fax: +1-204-474-7608; e-mail: ajanzen@cc.umanitoba.ca

Table 2

¹³C NMR chemical shifts of diffuoro[2.2] paracyclophanes

Isomer	C3	C4	C5	C6	C7	C8	C2	C9
4,13-isomer	125.4	162.1*	121.0	142.1	128.8	135.5	28.4	35.0
4,15-isomer	126.2	161.3	121.3	142.2	127.7	131.7*	29.1	34.4
4,12-isomer	125.2	161.3	118.2*	143.4	128.3	135.8	29.7	33.6
4,16 isomer	125.3	161.4	122.4	142.7	125.6*	134.8	29.7	33.4

^{*:} Indicates the presence of a fluorine substituent on the directly opposite benzene ring position (pseudo-gem relationship).

Table 3 19 F NMR chemical shifts, coupling constants and fluorine isotope shifts, $\Delta F(^{13}C/^{12}C)$, for difluoro[2.2] paracyclophanes

Isomer	δF (ppm)	<i>J</i> (F,F) (Hz)	¹ J(C4,F) (Hz)	² <i>J</i> (C3,F) (ppb)	² J(C5,F)	¹ ΔF(C4) ^a	² ΔF(C3) ^a	$^{2}\Delta$ F(C5) ^a
4,13-isomer	-118.1*	13.63*	247.95*	17.55	23.00	-78*		
4,15-isomer	-112.3	0.36	245.94	18.00	21.96	-83	-22	-21
4,12-isomer	-114.0	0.69	245.72	17.90	22.73*	-81	-22	-20*
4,16-isomer	-113.8	2.76	245.55	18.04	22.68	82		-21

^aFluorine isotope shifts of ¹²C and ¹³C compounds. A negative sign implies increased shielding as a result of substitution with the heavier isotope, e.g., $\Delta^{19}F(^{13}C4)^{-12}C4) = \delta^{19}F(^{13}C4) - \delta^{19}F(^{12}C4)$.

^{*:} Indicates the presence of a fluorine substituent on the directly opposite benzene ring position (pseudo-gem relationship).

Fig. 1. Summary of NMR chemical shifts of four isomers of diffuoro [2.2] paracyclophane. Data are taken from Tables 1, 2 and 3. An asterisk indicates the presence of a fluorine substituent on the directly opposite benzene ring position (pseudo-gem relationship).

relationship, in which a fluorine is on the directly opposite benzene ring position, and an asterisk is used in Tables 1, 2, 3 and Fig. 1 to highlight this pseudo-gem relationship.

The assignments of NMR spectra are in agreement with those of other substituted [2.2] paracyclophanes. For example, the ¹H chemical shift trend of H5 (5.87 ppm), H7 (6.73) and H8 (6.46) in the 4,16-isomer is nearly identical, except for a small upfield displacement of 0.18–0.21 ppm, to that of H5 (5.69), H7 (6.52) and H8 (6.26) in pseudo-*p*-dihydroxy[2.2] paracyclophane [2]. Similarly, H5 (6.38), H7 (6.32) and H8 (6.50) in the 4,12-isomer are nearly identical, except for an upfield displacement of 0.10–0.24 ppm, with H5 (6.28), H7 (6.08) and H8 (6.36) in pseudo-*o*-dihydroxy[2.2] paracyclophane [2]. The downfield ethano bridge protons H^A at 2.67–2.77 ppm (Table 1) are adjacent to a ring fluorine, analogous to the downfield peak δH 2.98 in polyfluoroaryl[2.2] paracyclophanes which is assigned to

ethano protons adjacent to the fluorinated ring, whereas peaks at δH 3.07 are assigned to ethano protons adjacent to the non-fluorinated ring [3]. A pronounced downfield shift is found for $\delta C4$ in all four isomers, i.e., $\delta C4$ 161.3–162.1 ppm (Fig. 1 and Table 2), and a similar effect is found in 4-fluoro[2.2] paracyclophane, i.e., $\delta C4$ 161.1 [4].

Slightly larger coupling, ${}^{1}J(CF)$ 247.95 Hz, is found for the 4,13-isomer (pseudo-gem fluorine) than for the other isomers, 245.55–245.94 Hz (Table 2). The largest fluorine–fluorine coupling, J(FF) 13.62 Hz, is also found for the 4,13-isomer, with significantly smaller couplings in the other isomers, 0.36 to 2.78 Hz (Table 2). Ernst et al. [5] and Ernst and Ibrom [6] have established a correlation in fluorocyclophanes between J(FF) and the F,F internuclear distance [5,6].

Additional peaks are found in the high resolution ¹⁹F NMR spectra which are assigned to ¹³C isotopomers (Table 2). The

carbon $^{12}\text{C}/^{13}\text{C}$ isotope effect of C4 on $\delta^{19}\text{F}$ is -78 ppb for the 4,13-isomer (pseudo-gem), and the isotope effect is slightly larger for the other isomers, -81 to -83 ppb. The isotope effect due to C3 and C5 is less and varies between -20 and -22 ppb in the 4,15-, 4,12- and 4,16-isomers, and the slightly lower value of -20 ppb is associated with a pseudo-gem fluorine. A negative sign implies increased shielding for the heavier isotopomer.

2. Experimental

NMR spectra were recorded on a Bruker AM300 spectrometer at 300.1 (1 H), 282.4 (19 F), and 75.47 (13 C) MHz, with the use of CHCl₃ (7.24 ppm w.r.t to TMS), C₆F₆ (-162.9 ppm w.r.t. to CFCl₃), and CDCl₃ (77.0 ppm w.r.t. to TMS), respectively, as internal references. Chemical shifts

and coupling constants are given in Tables 1, 2 and 3, and a summary of chemical shifts is shown in Fig. 1.

The synthesis of isomers of difluoro [2.2] paracyclophane, and the manual collection of HPLC fractions for the preparation of NMR samples was carried out as described previously [1].

References

- [1] X. Huang, F. Qu, Z. Li, J. Fluorine Chem. 40 (1988) 33.
- [2] H.J. Reich, D.J. Cram, J. Am. Chem. Soc. 91 (1969) 3534.
- [3] R. Filler, G.L. Cantrell, E.W. Choe, J. Org. Chem. 52 (1987) 511.
- [4] K. Tokita, T. Takemura, S. Kondo, N. Mori, Bull. Chem. Soc. Jpn. 53 (1980) 450.
- [5] L. Ernst, K. Ibrom, K. Marat, R.H. Mitchell, G.J. Bodwell, G.W. Bushnell, Chem. Ber. 127 (1994) 1119.
- [6] L. Ernst, K. Ibrom, Angew. Chem. Int. Ed. Engl. 34 (1995) 1881.